INTRODUCTION

Since *Arabidopsis thaliana* is believed to possess one of the smallest nuclear genomes among higher plants, the exact determination of the genome size has received much attention. Different techniques have been used to estimate the genome size, among them reassociation kinetics (Leutwiler et al., 1984), quantitative gel blot hybridization (Francis et al., 1990), Feulgen photometry (Bennett and Smith, 1991; Krisai and Greilhuber, 1997) and flow cytometry (Arimuganathan and Earle, 1991; Galbraith et al., 1991; Marie and Brown, 1993; Dolezel et al., 1998; Barow and Meister, 2002; Bennett et al., 2003).

Previous studies have estimated the haploid genome size (1C-value) at between 0.051 pg (Francis et al., 1990, from Bennett et al., 2003) and 0.215 pg (Dolezel et al., 1998, laboratory 1). Sequencing studies found about 125 Mbp (Arabidopsis Genome Initiative, 2000), which corresponds to 0.128 pg. Determinations based on reassociation kinetics and quantitative gel blot hybridization tend to suggest smaller genome sizes (0.051–0.082 pg; Leutwiler et al., 1984; Francis et al., 1990) than Feulgen photometry or flow cytometry (0.085–0.215 pg; Galbraith et al., 1991; Dolezel et al., 1998). Furthermore, older studies tend to have estimated lower values than more recent ones.

With regard to the small 1C-value, the role of endopolyploidy and its relation to cell size or life-cycle has been investigated by several authors (e.g. Melaragno et al., 1993; Kondorosi et al., 2000; Beemster et al., 2002; Barow and Meister, 2003). It was found that *A. thaliana* has a high level of endopolyploidy in nearly all parts of the plant (cotyledon, root, lower leaf stalk, lower leaf, upper stem, upper leaf, flower stalk, sepal, petal; Galbraith et al., 1991; Barow and Meister, 2003).

Most of the investigations of genome size in *A. thaliana* have made use of the accession ‘Columbia’. There are indications that intraspecific variation exists between accessions, e.g. between ‘Columbia’ and the Cape Verde Islands ecotype ‘Cvi-0’ (A. Meister, unpubl. res.).

In this study, flow cytometry was used to measure the genome size of 21 accessions from throughout the entire Eurasian range, including newly collected material from Middle Asia, and one accession from Japan. Since intraspecific genome size differences are subject to much critical discussion (e.g. Greilhuber, 1998), an attempt was made to check the results by measuring each accession ten times and repeating this procedure for accessions with especially large and small genome sizes.

MATERIALS AND METHODS

Plant material

Twenty-one accessions were included in this study, of which 18 were obtained from the Nottingham *Arabidopsis* Stock Centre and three were collected in the wild (Table 1). Plants were grown at 24 °C (16 h day, 8 h night) and pots were not allowed to dry out. Leaves from three to five individuals per accession were used for the determinations. Ten determinations were made per accession. This reduces the assumed standard error ratio of 5 % by a factor of 1/n, i.e. to 1.6 % for ten determinations and 1.1 % for 20 determinations. Three accessions found to have small (‘Kn-0’, ‘Köl’) and large (‘Mas’) genome sizes in the first series of determinations were measured a second time with ten repeats.

Preparation and analysis

The protocol of Barow and Meister (2002) was followed in the preparation of the nuclear suspensions and the...
procedure for analysing the DNA contents. A FACStar PLUS flow cytometer (Becton Dickinson, San José, CA, USA) equipped with two argon lasers INNOVA 90–5 (Coherent, Palo Alto, CA, USA) was used and the data were analysed with the program CellQuest (Becton Dickinson, San José, CA, USA). Nuclear DNA content was estimated by the fluorescence of the nuclei of samples stained with propidium iodide relative to the internal standard Raphanus sativus (2C = 1.38 pg; Dolezel et al., 1998). Usually 10,000 nuclei were measured.

Statistical analysis
Normal distribution and homogeneity of variances of the average genome size per accession were tested with the Kolmogorov–Smirnov test and the Levene test, respectively. As the data had no homogeneity of variances, no variance analysis or parametric tests were used for further computations. Instead, the non-parametric Kruskal–Wallis test was used and calculated comparisons of means were conducted using the Dunn test, which can handle the unequal sample size of ten or 20 determinations per accession. Genome size differences among di- and tetraploids were computed with the Mann–Whitney U test.

Correlations between mean genome size, geographic coordinates and seed size parameters were estimated with the Spearman rank correlation. Calculations were made using the programs SPSS 10.0 and SigmaStat (Erkrath, Germany). Geographical coordinates were kindly provided by M. H. Hoffmann (University of Halle, Germany).

RESULTS
Ploidy levels
Of the 21 investigated accessions, 19 were diploid and two tetraploid. The tetraploid accessions ‘Stoc’ and ‘Wa-1’ were excluded from the correlations of genome size, geographic coordinates and seed parameters so as to determine the effect of genome size independently from that of ploidy.

Differences within accessions
Replicate measurements within accessions were highly repeatable. The standard deviation of genome size in the diploid accessions ranged between 0.004 pg for the accession ‘Ws’ and 0.014 pg for the accession ‘Oy-0’ (equivalent to 1.04 and 3.26 % of the genome sizes, respectively). The ten replicate measurements of ‘Kn-0’, ‘Köl’ and ‘Mas’ also varied in this range. An example of a typical flow cytometry histogram is shown in Fig. 1, which also illustrates the high rate of endopolyploidy.

Differences between diploid accessions
There was a 1.1-fold difference in genome size between the accessions, with ‘Col’ being the smallest and ‘Kly-1’ being the largest accession. The mean diploid genome size was 2C = 0.431 pg. A general overview of genome sizes in all the accessions investigated is given in Table 2. Genome sizes of the 19 diploid accessions were normally distributed (P = 0.956) but homogeneity of variances was rejected (P = 0.016). Therefore the non-parametric Kruskal–Wallis test with pairwise comparisons of mean genome size

<table>
<thead>
<tr>
<th>Accession</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag-0*</td>
<td>Argentat, France</td>
</tr>
<tr>
<td>Alc-0*</td>
<td>Alcalá de Henares/Madrid, Spain</td>
</tr>
<tr>
<td>Chi-0*</td>
<td>Chisdra, Russia</td>
</tr>
<tr>
<td>Col*</td>
<td>Columbia, Poland</td>
</tr>
<tr>
<td>Es-0*</td>
<td>Espoo, Finland</td>
</tr>
<tr>
<td>Kent*</td>
<td>Kent, UK</td>
</tr>
<tr>
<td>Kly-1†</td>
<td>Kolyvan, Russia</td>
</tr>
<tr>
<td>Kn-0*</td>
<td>Kaunas, Lithuania</td>
</tr>
<tr>
<td>Köl*</td>
<td>Köl, Germany</td>
</tr>
<tr>
<td>La-0*</td>
<td>Landsberg/Warthe, Poland</td>
</tr>
<tr>
<td>Li-2*</td>
<td>Llagostera, Spain</td>
</tr>
<tr>
<td>Mas†</td>
<td>Madjacha, Russia</td>
</tr>
<tr>
<td>Oph†</td>
<td>Ophain, Belgium</td>
</tr>
<tr>
<td>Oy-0†</td>
<td>Oystese, Norway</td>
</tr>
<tr>
<td>Sah-0*</td>
<td>Sierra Alhambra, Spain</td>
</tr>
<tr>
<td>Sha†</td>
<td>Shkodra, Tajikistan</td>
</tr>
<tr>
<td>Sij-2†</td>
<td>Sjak, Uzbekistan</td>
</tr>
<tr>
<td>Stoc*</td>
<td>Stockholm, Sweden</td>
</tr>
<tr>
<td>Tsu-0*</td>
<td>Tsu, Japan</td>
</tr>
<tr>
<td>Wa-1*</td>
<td>Warszau, Poland</td>
</tr>
<tr>
<td>Ws†</td>
<td>Wassilevskija/Dnepr, Russia</td>
</tr>
</tbody>
</table>

† From Nottingham Arabidopsis Stock Centre (NASC).
‡ Collected in the wild.
using the Dunn test was used (Table 2). Since this test uses
ranks instead of absolute values, differences between
accessions are less pronounced than in a parametric test.
Despite this weakness of the non-parametric test, significant
differences ($P < 0.05$) were found between all measure-
ments of the five largest diploids (‘Kly-1’, ‘Mas’, ‘Sah-0’,
‘Alc-0’, ‘Sha’) and the three accessions with the smallest
genome sizes (‘Col’, ‘Köl’, ‘Kn-0’) (Table 2). Accessions
with mean genome size differences smaller than that
between ‘Chi-0’ and ‘Col’ are not significantly different
from each other. The percentage difference of mean genome
sizes between ‘Chi-0’ and ‘Col’ is 5–35%. Thus, significant
differences between accessions are larger than the standard
deviation within accessions.

Correlation with coordinates and seed parameters

The non-parametric Spearman test was used to test for
correlation of genome size and latitude/longitude. Spearman’s rho resulted in a significant positive correlation
between genome size and longitude ($\rho = 0.185$, $P = 0.006$, $n = 220$). This suggests a larger mean genome size of the
Eastern accessions compared with the Western accessions
within the Eurasian distribution range.

A negative correlation was observed between genome
size and latitude for the 19 diploids ($\rho = -0.138$, $P = 0.040$, $n = 220$). Thus, the genome size decreases slightly but
significantly with increasing latitude (diploid accessions
have a larger genome in the south than in the north).

Seed width and length were measured for 10–50 seeds per
accession. Seed length varied between 0.359–0.717 mm
with a mean of 0.537 mm, and seed width varied between
0.250–0.543 mm with a mean of 0.334 mm. Spearman’s rho
revealed a small but significant negative correlation
between genome size and seed width ($\rho = -0.099$, $P < 0.001$, $n = 700$) and genome size and seed length ($\rho =
-0.099$, $P < 0.001$, $n = 700$).

Spearman rank correlations between genome size and
precipitation or temperature in the vegetative period from
October to June revealed no significant correlations (data
not shown).

Tetraploid accessions

The two tetraploid accessions ‘Stoc’ and ‘Wa-1’ had
means of 0.889 pg and 0.892 pg, with standard deviations of
0.031 and 0.045 (equivalent to 3.44–5.08 % of the genome
size), respectively (Table 2). The 1C DNA amounts of
0.445 pg and 0.446 pg are comparable to those of the
2C-values of the diploid accessions with large genome
sizes.

Rather surprisingly, the length and width of the tetraploid
seeds ranged around the upper level of the diploid seeds
rather than being noticeably larger, but a Mann–Whitney U
test detected significant differences ($P < 0.001$) between
diploid and tetraploid seeds. Seed length varied between
0.542 and 0.696 mm in ‘Wa-1’ and 0.630 and 0.880 mm in
‘Stoc’, with mean seed lengths of 0.620 mm and 0.708 mm,
respectively. Seed width ranged between 0.315 and 0.413 mm in ‘Wa-1’ and 0.326 and 0.500 mm in ‘Stoc’,
with mean seed widths of 0.376 mm and 0.408 mm,
respectively. Thus, single seeds from the diploid accessions
‘Oph’ (0.511 mm) and ‘Sij-2’ (0.543 mm) had larger seed
widths than the tetraploid seeds from ‘Wa-1’ and ‘Stoc’.

Table 2. Mean (± standard deviation), minimum and maximum genome sizes of 21 accessions of *A. thaliana*

<table>
<thead>
<tr>
<th>Accession</th>
<th>No. of determinations</th>
<th>Mean (pg)</th>
<th>Minimum (pg)</th>
<th>Maximum (pg)</th>
<th>Significance*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col</td>
<td>10</td>
<td>0.412 ± 0.007</td>
<td>0.403</td>
<td>0.424</td>
<td>a</td>
</tr>
<tr>
<td>Köl</td>
<td>20</td>
<td>0.415 ± 0.012</td>
<td>0.390</td>
<td>0.437</td>
<td>a, b</td>
</tr>
<tr>
<td>Kn-0</td>
<td>20</td>
<td>0.421 ± 0.006</td>
<td>0.403</td>
<td>0.429</td>
<td>a, b, c, d</td>
</tr>
<tr>
<td>La-0</td>
<td>10</td>
<td>0.425 ± 0.007</td>
<td>0.417</td>
<td>0.435</td>
<td>a, b, c, d</td>
</tr>
<tr>
<td>Es-0</td>
<td>10</td>
<td>0.426 ± 0.009</td>
<td>0.411</td>
<td>0.439</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>Sij-2</td>
<td>10</td>
<td>0.429 ± 0.005</td>
<td>0.419</td>
<td>0.438</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>Kent</td>
<td>10</td>
<td>0.429 ± 0.011</td>
<td>0.412</td>
<td>0.444</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>Li-2</td>
<td>10</td>
<td>0.429 ± 0.006</td>
<td>0.421</td>
<td>0.439</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>Tsu</td>
<td>10</td>
<td>0.430 ± 0.007</td>
<td>0.421</td>
<td>0.443</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>Ag-0</td>
<td>10</td>
<td>0.432 ± 0.008</td>
<td>0.411</td>
<td>0.444</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>Oy-0</td>
<td>10</td>
<td>0.436 ± 0.014</td>
<td>0.419</td>
<td>0.462</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>Oph</td>
<td>10</td>
<td>0.434 ± 0.010</td>
<td>0.419</td>
<td>0.445</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>Chi-0</td>
<td>10</td>
<td>0.434 ± 0.008</td>
<td>0.416</td>
<td>0.446</td>
<td>b, c, d, e, f</td>
</tr>
<tr>
<td>Wa-1</td>
<td>10</td>
<td>0.435 ± 0.004</td>
<td>0.427</td>
<td>0.441</td>
<td>c, d, e, f</td>
</tr>
<tr>
<td>Sha</td>
<td>10</td>
<td>0.439 ± 0.007</td>
<td>0.430</td>
<td>0.450</td>
<td>d, e, f</td>
</tr>
<tr>
<td>Alc-0</td>
<td>10</td>
<td>0.440 ± 0.008</td>
<td>0.427</td>
<td>0.449</td>
<td>d, e, f</td>
</tr>
<tr>
<td>Sah-0</td>
<td>10</td>
<td>0.441 ± 0.009</td>
<td>0.427</td>
<td>0.456</td>
<td>d, e, f</td>
</tr>
<tr>
<td>Kly-1</td>
<td>10</td>
<td>0.450 ± 0.014</td>
<td>0.432</td>
<td>0.472</td>
<td>e, f</td>
</tr>
<tr>
<td>Mas</td>
<td>20</td>
<td>0.448 ± 0.007</td>
<td>0.431</td>
<td>0.458</td>
<td>f</td>
</tr>
<tr>
<td>Stoc</td>
<td>10</td>
<td>0.889 ± 0.031</td>
<td>0.856</td>
<td>0.942</td>
<td></td>
</tr>
<tr>
<td>Wa-1</td>
<td>10</td>
<td>0.892 ± 0.045</td>
<td>0.848</td>
<td>0.983</td>
<td></td>
</tr>
</tbody>
</table>

Differences were calculated for the 19 diploid accessions using the Dunn test.
* Accessions with different letters have significantly different means ($P < 0.05$).
DISCUSSION

The 1C-values given here, estimated using *R. sativus* (2C = 1.38 pg) as an internal standard, agree with some previously published values (e.g. Galbraith *et al.*, 1991; Dolezel *et al.*, 1998), but are higher than other estimated values [e.g. Arabidopsis Genome Initiative (2000) or Bennett *et al.* (2003)]. Differences between these studies might be due to the use of different types of flow cytometers (lamp/laser) (Dolezel *et al.*, 1998), different size standards (Dolezel *et al.*, 1998; Barow and Meister, 2002) or, in the case of sequencing, to a conservative, low estimate of the contribution of centromer regions of the chromosomes of *A. thaliana* (Bennett *et al.*, 2003).

Bennett *et al.* (2003) compared the incompletely sequenced *A. thaliana* genome against the completely sequenced *Caenorhabditis elegans* genome (1C = 0.1 pg) and determined *A. thaliana* as 1C = 0.16 pg. Vilhar *et al.* (2001), using image cytometry with *Pisum sativum* as the standard (2C = 8.84 pg), estimated similar C-values for *A. thaliana* (2C = 0.32 and 0.33 pg). The value used for *R. sativus* (Dolezel *et al.*, 1998) was derived by a cascade down from *Allium cepa* (2C = 33.5 pg), in which different laboratories used different flow cytometers and had divergent estimates for *A. thaliana*.

Nevertheless, since reference was always made to the same internal standard, *R. sativus* with 1.38 pg (Dolezel *et al.*, 1998, laboratory 1, which was also used for these measurements), the intraspecific variation differences found in this study for accessions of *A. thaliana* are true.

Measuring accessions from all across the Eurasian range of the species, the Dunn test revealed significant differences. Intraspecific variations of genome size below the species level are supposed to be rare (see review by Greilhuber, 1998). Reported differences can be explained by chromosome polymorphisms and spontaneous aberrations, but also by technical shortcomings (Galbraith *et al.*, 1991; Greilhuber, 1998). Possible measuring errors in the investigations reported here are limited by using the same flow cytometer and at least ten repetitions, which decreases the estimated error from 5% per measure to 1.6% (n = 10) or 1.1% (n = 20) per accession mean. Taking into account the genetic diversity of the accessions found by Schmuths *et al.* (2004) and the magnitude of the variation in spontaneous aberrations or chromosome polymorphisms found in various angiosperm species (reviewed by Greilhuber, 1998), intraspecific variations in genome size can be expected.

The genome size of the tetraploids ranged between 0.445 and 0.446 pg, which is comparable to twice that of the diploid accessions with large genome size. Polyploid angiosperms can reduce or increase their genome sizes relative to the ancestral diploids (reviewed by Bennetzen, 2002; see also Soltis and Soltis, 1995; Wendel, 2000). Since it is not known the precise diploid ancestor(s) of the tetraploid accessions in *A. thaliana*, it is impossible to know if the relatively high tetraploid genome size deviates from the sum of the parental values. Generally, cell and organ size in plants is correlated with DNA content (e.g. Strasburger *et al.*, 1991). The significant size differences between seeds from diploid and tetraploid accessions is therefore expected, while the significance of the negative relationship between mean genome size of the diploids and seed length and width might be an artefact of the high number of samples (n = 700) and the very small Spearman’s rho (less than –0.1). This is also suggested by relatively few accessions with the 10% larger genome sizes as compared with the large variation of the seed parameters. In addition, the variation of the seed parameters does not correlate with small or large genome sizes.

Genome sizes of the accessions investigated increased slightly but significantly from north to south and from west to east. Previous studies have found positive correlations between the duration of the vegetative period and genome sizes in various angiosperms (Bennett, 1987; Reeves *et al.*, 1998; Turpeinen *et al.*, 1999). This seems to agree with the data given here. However, since *A. thaliana* can also germinate in autumn as well as in spring, which prolongs the vegetative period, the correlation disagrees with these results. Most accessions are summer annuals; winter annuals are only found in northern Europe (Laibach, 1951). The geographical separation between winter and summer annuals is a quantitative trend rather than a strict replacement, since even in Siberia there are summer annuals among a majority of winter annuals (pers. obs.). Thus, the question remains unanswered as to whether the correlation of genome size and duration of vegetative period found in other angiosperms is characteristic for *A. thaliana* or is due to sampling artefacts.

Recent molecular studies of the *Arabidopsis* genome are related to the published ‘Columbia’ sequence and comparisons with parts of the Ler genome (http://www.negr.org/cgi-bin/cereon/cereon_login.pl). Accessions with a significantly larger genome size than the widely used accession ‘Columbia’ have been found. The increased genome size of some accessions may be due to a larger centromeric region (Bennetzen *et al.*, 2003) but may also involve coding regions. A closer investigation of the sequences involved in the intraspecific genome size differences of *A. thaliana* could potentially influence the interpretation of comparative studies of naturally occurring variation, including QTL analysis (Alonso-Blanco and Koornneef, 2000; Mitchell-Olds, 2001; Schmid *et al.*, 2003).

ACKNOWLEDGEMENTS

We thank C. Koch for her technical assistance. Special thanks go to N. Ermakov and M. H. Hoffmann, who helped collect *A. thaliana* in Siberia. This work was supported by grants from the Deutsche Forschungsgemeinschaft to K.B. and the Fonds der Chemischen Industrie to A.M.

LITERATURE CITED

Schmuths et al.—Genome Sizes in Arabidopsis thaliana Accessions

Bennett MD, Leitch IJ, Price HJ, Johnston JS. 2003. Comparisons with Ceanothus (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in arabidopsis to be ~157 Mb and thus ~25 % larger than the Arabidopsis Genome Initiative estimate of ~125 Mb. Annals of Botany 91: 1–11.

SPSS. 1999. SPSS for Windows. Chicago, IL: SPSS Inc.

